Plant and Wildlife Sciences Graduate Course Descriptions

PWS 505	Aquatic and Terrestrial Biogeochemistry (3 Cr.) (Fall odd years) An in-depth treatment of global biogeochemical cycles, focusing on cycles of carbon, oxygen, nitrogen, phosphorus, and sulfur in the atmosphere, hydrosphere, and lithosphere. Special attention will be given to the microbial mediated transformations and the impact of human disturbances in terrestrial and aquatic environments.
PWS 511	Environmental Biophysics: Soil and Plant Water Relations (4 Cr.) (Winter even years) (Prereq: Phscs 105 and PWS 282; or equivalents) Integrating biological, physical, and chemical processes of water and solute movements through the soil-plant-atmosphere continuum.
PWS 512	Rangeland Landscape Ecology and Geographic Information Systems (3 Cr.) (Fall odd years) Applying landscape ecology theory to evaluate, describe, and predict spatial patterns and processes within rangeland ecosystems using geographic information systems (GIS), remote sensing, and global positioning systems (GPS).
PWS 513	Environmental Field Instrumentation (3 Cr.) (Fall) (Prereq: Phscs 105 and PWS 282; or equivalents) Hands-on course and lab teaching students how to use instrumentation in the field and in controlled settings to measure key environmental parameters. Learning the physical principles underlying sensors.
PWS 540	Plant Response to the Environment (3 Cr.) (Fall even years) (Prereq: PWS 440 or equivalent; PWS 494R or concurrent enrollment) Advanced plant physiological ecology principles.
PWS 547	Ungulate Conservation and Management (2 Cr.) (Winter even years) (Prereq: PWS or Bio 350; and Bio 447; or equivalents) Integrating principles of natural history, population ecology, behavior, and conservation biology of North American ungulates. Special emphasis on management and conservation applications.
PWS 551	Quantitative Ecology (3 Cr.) (Winter even years) (Prereq: Bio 350 or equivalent; Stat 121 or 511 or concurrent enrollment) Quantitative methods for ecological sampling and data analysis.
PWS 553	Restoration Ecology (3 Cr.) (Winter odd years) (Prereq: PWS 282, 416; Bio 350; or equivalents) Nature of ecosystem disturbance and plant succession; developing science and practice of ecological restoration; case studies of applied restoration.

PWS 554	Wildlife Behavioral Ecology (3 Cr.) (Fall even years) (Prereq: Bio 100, 350; or equivalents) (Note: Field trips required) Integrating principles of ethology, sociobiology, and behavioral ecology using examples from wildlife resources; behavioral sampling methods.
PWS 559	Molecular Plant Breeding (3 Cr.) (Fall odd years) (Prereq: PWS 265, 340, 485, 586, PDBio 360; or equivalents; PWS 494R or concurrent enrollment) Molecular genetics methods applied to improvement of economically important plants. Theory and methods of plant transformations.
PWS 560	Quantitative Environmental Chemistry (2 Cr.) (Winter even years) (Prereq: Chem 105, 106, 107; or equivalent) (Recommended: Chem 223 and/or PWS 283, 306, 405, 406) Laboratory chemical analysis of soils and plant materials in soil and plant research.
PWS 575	Plant Pathology (3 Cr.) (Fall odd years) (Prereq: PWS 100 or equivalent) Concepts associated with symptoms, development, control, and classification of plant diseases. Identification and classification of plant fungi, bacteria, and viruses.
PWS 588	Metagenomics (3 Cr.) (Winter odd years) (Prereq: Introductory coding and mommand-line experience (e.g. Bio 664 for grad students or seek instructor's consent); strongly recommend Bio/MMBio/PWS 468 or corresponding graduate sections) Introduction to comparative and fuctional analysis of genomic and metagenomic datasets, including microbial functions that affect host health. Analyzing existing and novel datasets with field-standard techniques.
PWS 598R	Advanced Topics in the Plant and Wildlife Sciences (1-3 Cr.) (Fall Contact Department, Winter Contact Department, Spring Contact Department, Summer Contact Department)
PWS 629	Conservation of Mega and Meso Carnivores (3 Cr.) (Fall odd years) Life histories of representative carnivores with political, popular, and managerial problems surrounding their existing and proposed conservation.
PWS 633	Biometry and Experimental Design (3 Cr.) (Fall) (Prereq: Stat 121 or 510 or equivalent) The design, analysis, and interpretation of biological research using modern analytical tools and relevant software.
PWS 634	Analysis and Management of Plant and Animal Populations (3 Cr.) (Winter odd years) Exposure to common tools for analysis and management of plant and animal populations. Program mark, program distance, movement and home range analysis, point pattern analysis, etc.

	Analysis of Complex Genomes (3 Cr.) (Fall odd years) (Prereq: PWS 340 or
PWS 670	equivalent) Assembly and analysis of eukaryotic genomes, including the
	theory underlying and application of commonly used methods. First in a
	two-course series.
	Comparative Genomics (3 Cr.) (Winter even years) (Prereq: PWS 670)
	Analysis and interpretation of eukaryotic genomes in a comparative context.
PWS 672	Theory behind commonly used methods for comparing whole genomes,
	such as read alignment, whole genome alignment, orthology prediction,
	variant calling, detection of positive selection, and phylogenomic analysis.
	Second of a two-course series.
	Cytogenetics (3 Cr.) (Winter odd years) (Prereq: PWS 340, 485; or
PWS 673R	equivalents) Chromosome structure and function; classical and molecular
	cytological methods of chromosome and genome analysis.
PWS 673R	Plant Cytogenetics (3 Cr.) (Winter odd years) (Prereq: PWS 340, 485; or
	equivalents)
	Seminar (1 Cr.) (Fall, Winter) Display fluency in the vocabulary and current
PWS 694R	research techniques in the four focal areas of the PWS Department:
	Environmental Science; Genetics and Biotechnology; and Wildlife and
	Wildlands Conservation. Explain the importance of Gospel-centered
	stewardship and sustainability.
	Research (1-9 Cr.) Graduate students will use scientific principles to answer
PWS 697R	objectives associated with their individual research projects. Skills and
	techniques acquired in class through advisors will be applied to research
	projects that will be evaluated by peers.
PWS 698R	Master's Project (1-6 Cr.)
	Master's Thesis (1-9 Cr.) Students will be able to apply research principles to
PWS 699R	practical problems to alleviate concerns. Graduates will understand scientific
	principles and methods and be able to present research for peer evaluation.
PWS 799R	Doctoral Dissertation (1-9 Cr.) Students will be able to apply research
	principles to practical problems to alleviate concerns. Graduates will
	understand scientific principles and methods and be able to present
	research for peer evaluation.
L	·

Additional courses to consider for Program of Study

only one 300 level course and only two 400 level courses can be added to a PWS Program of Study

BIO 430	Plant Classification and Identification (4 Cr.) (Fall) (Prereq: BIO 230 or
	instructor's consent) Principles of plant systematics, taxonomy, and
	classification, emphasizing family recognition by sight, terminology, and use
	of identification keys to the temperate flora.
BIO 470	History and Philosophy of Biology (3 Cr.) (Fall) (Prereq: BIO 350)
	Development of fundamental generalizations of biology; nature of science;
	applications to major philosophical issues of current science.
BIO 503	Research Orientation (1 Cr.) (Fall) Introduction to graduate school and
	research techniques.
BIO 510	Biological Systematics and Curation (3 Cr.) (Fall even years) Principles,
	methods, and tools of taxonomy and systematics as applied to species
	delimitation, specimen-based research, nomenclatural codes, and the
	curation of biological specimens.
BIO 517	Publishing in Peer-Reviewed Journals (2 Cr.) (Fall Contact Department,
	Winter odd years) (Prereq: BIO 494R or BIO 699R or BIO 799R) Each student
	enrolled in this course will be guided through the processes of writing a
	scientific manuscript and submitting it for publication in a peer-reviewed
	journal.
BIO 520	Symbiosis (3 Cr.) (Fall Contact Department, Winter Contact Department)
	(Prereq: BIO 220 or BIO 230) For graduate and upper-level undergraduate
	students, an introduction to the differences and commonalities among a
	diverse range of symbioses involving animals, plants, fungi and prokaryotes
	and the ways in which they influence biological communities. Topics include
	the human gut microbiome, mycorrhizas, plant-rhizobium symbiosis, plant-
	insect symbioses, marine invertebrate-bacterial symbioses, ant symbioses,
DIO 544	lichen and soil crusts. Aquatic Entomology (4 Cr.) (Fall even years) (Prereq: BIO 441 or equivalent)
BIO 541	Morphology, classification, biology, and functional ecology of aquatic
	insects. Field trips required.
BIO 555	Evolutionary & Ecological Modeling (2 Cr.) (Winter odd years) (Prereg:
010 333	Senior status in bioinformatics program or graduate status; STAT 511, 512,
	or equivalent; instructor's consent) Using models in ecology. Practical
	experience in analytical, simulation, and agent-based models.
BIO 557	Stream & Wetland Ecology (4 Cr.) Stream and wetland ecology; their biota
DIO 337	and their physical/chemical properties.
BIO 559R	Advanced Systematics (1-6 Cr.) (Contact Department) (Prereq: Instructor's
DIO 333K	consent)
BIO 652	Evolutionary Ecology (3 Cr.) Exploring the diversity of life by integrating
515 052	ecological and evolutionary perspectives. Topics include theoretical
	population ecology, advanced evolutionary biology, and behavioral ecology.
	, , , ,
l	I.

BIO 653	Community & Ecosyst Ecology (3 Cr.) Integrating ecological and biogeochemical concepts to understand the structuring of biological
	communities and ecological systems. Topics include community assembly,
	trophic dynamics, systems biology, ecosystem services, and biodiversity-
	ecosystem function.
BIO 654	Speciation and Phylogeography (3 Cr.) Students will understand theoretical
	foundations of speciation and phylogeography including key theories and
	research practices; implement empirical approaches to analyze, interpret, and communicate relevant biological issues; and conceive, execute, and
	present a related independent research study.
BIO 664	Bioinf & Data Analysis 1 (4 Cr.) Bioinformatics skills have become critical for
	biological research. This course is intended to be the first half of a two-
	semester sequence that introduces students to bioinformatics. Students will
	be introduced to the Linux operating system, Python, and high performance
	computing. Students will acquire the skills to perform data manipulations
DIO CCE	and simple analyses on biological datasets.
BIO 665	Bioinf & Data Analysis 2 (2 Cr.) Students will develop skills in applying bioinformatics algorithms to biological data and in critically analyzing results.
	Building on skills and concepts learned in BIO 664, students will learn to
	write code in the R programming language, perform statistical tests, and
	create data visualizations. Students will interpret and discuss findings from
	prior research studies from various biological subdisciplines. Students will
	conceive, execute, and present an independent research study.
BIO 676	Univ Teaching 1 (3 Cr.) An exploration into learning theories that influence
	teaching pedagogies: understanding how students learn; designing
	curriculum to fit current research-backed models of learning; understanding
	assessment strategies; practicing backward design; and preparing graduate
212.67	students for an authentic teaching experience.
BIO 677	Univ Teaching 2 (2 Cr.) (Prereq: Univ Teaching 1) Guided experience in
	development and evaluation of instructional product: analyzing learning outcomes; developing instructional materials and assessment instruments;
	critique of finished instruction; and practical experience under the direction
	of a faculty member.
BIO 691R	Graduate Seminar (0.5 Cr) (Fall, Winter)
CE 534	Hydroinformatics (3 Cr.) (Fall even years) (Prereq: CE 414 & CE 431)
	Principles of hardware and software systems for water and climate data
	collection, storage sharing, interpretation, analysis, and modeling.
CE 594R	Selected Problems in Civil Engineering (1-3 Cr.) (Fall; Winter; Spring;
	Summer) Water Policy- Survey of policy cycles, policy tools, and major laws
	on water quantity, quality, and management, with civil engineering
0500 444	applications.
GEOG 414	Low Altitude, Large-Scale Image Acquisition and Processing (3 Cr.) (Fall)
GEOG 414	Small Unmanned Aerial Systems (sUAS) provide high-quality aerial imagery.
GEOG 414	Small Unmanned Aerial Systems (sUAS) provide high-quality aerial imagery. Emphasizes flight planning, acquisition, and processing of sUAS data to study
GEOG 414	Small Unmanned Aerial Systems (sUAS) provide high-quality aerial imagery.

GEOG 503	Geographic Information Systems (4 Cr.) (Fall, Winter, Spring Contact Department) (Prereq: Graduate standing) Using geographic information for solving advanced spatial problems. Introduction to using and producing maps and computer-based geographic information systems (GIS) as geographic tools. Hands-on research applications in the students' disciplines.
GEOL 435	Groundwater (3 Cr.) (Fall) (Prereq: GEOL 111; or GEOL 330; Math 110 or equivalent.) Introduction to the occurrence, movement, and properties of subsurface water. Topics include surface and groundwater relationships, water budgets and the hydrologic cycle, Darcy's law, the physics of groundwater flow, flow nets, flow paths in confined and unconfined aquifers, and basin hydrogeology.
GEOL 531	Geoscience Data Analysis (3 Cr.) (Fall) Basic scientific computing skills in MATLAB, and application of statistical and numerical modeling techniques to geoscientific problems.
GEOL 535	Contaminant Hydrogeology (3 Cr.) (Winter odd years) (Prereq: GEOL 435 or equivalent) Principles, tools, and applications used to solve heavy metal, organic, and radionuclide groundwater contamination problems. Topics include regulations, mass transport, multiphase flow, transformation, retardation, and attenuation.
GEOL 550	Environmental Soil Chemistry (3 Cr.) (Fall Contact Department, Winter Contact Department) (Prereq: CHEM 105, 106, 107; or equivalents) Chemistry of soil systems at macroscopic and microscopic scales, examined from the perspective of scientists interested in environmental assessment and remediation.
HLTH 606	Environmental Hith Sciences (3 Cr.) (Winter) Environmental risks for human disease. Contributions of physical and biological factors and social, economic, and political determinants relative to sustainable development and promotion of health.

LAW 788R	Law School Clinic (3 Cr.) Live-client interactions with underserved
	populations under the supervision of seasoned practitioners. Students will
	advise and represent one or more actual clients with predominant focus on
	immigration law, consumer law, government benefit law and other areas of
	law common to the immigrant, refugee and Hispanic populations. Emphasis
	will be on the development of professional skills including interviewing and
	counseling, conducting legal research and drafting legal documents.
	Students must attend a weekly seminar taught by the clinical supervisor. An
	offsite requirement to work in the clinic from 5 to 7 pm on Thursdays at the
	Provo Deseret Industries is also required.
LING 501	Advanced Research and Writing Techniques for Second Language Writers
	(3 Cr.) (Winter) (Prereq: For graduate international ESL students) Non-native
	English speaking students will develop research and writing techniques
	necessary for graduate-level writing.
MBA 692	Social Impact (3 Cr.) (Fall, Winter) Issues facing social innovators, those that
	work full-time for them, and those who support them; understanding
	complex systems of for-profit, nonprofit, and hybrid social ventures;

	outlining involvement in social innovation as part of a lifetime of meaningful service.
MBA 693R	Special Topics in Management (3 Cr.) (Fall, Winter, Spring)
MMBIO 551R	Current Topics in MMBio (2 Cr.) Readings from current literature on a
	specific topic; student presentations and discussion.
MMBIO 552	Flow Cytometry (2 Cr.) (Fall) The theory and instrumentation of flow
	cytometry, including current applications and hands-on training.
MMBIO 663	Articulating Science (2 Cr.) (Winter) (Prereq: Molecular Genetics in Practice)
	Identifying open scientific questions and crafting written proposals
	describing context, impact, and detailed experimental research plans. Also,
	learning to critically evaluate the scientific writing of others.
MMBIO 667	Quantitative Genomics (2 Cr.) (Fall) Students will understand, evaluate, and
	apply common genomic/transcriptomic methods, which will facilitate
	processing and interpreting results from large datasets in a biologically
	meaningful way.
MPA 635	Data Visualization (1.5 Cr.) (Winter) Principles and practice of effectively
	communicating data visually to a variety of stakeholders in a pleasing and
	readily accessible manner, including an understanding of design principles
	and data communication ethics.
STAT 511	Stat Methods for Research 1 (3 Cr.) (Fall, Winter) (Prereq: STAT 121; or STAT
	201; or equivalent) Basic statistical methodologies and experimental design.
	Topics include simple analysis of variance, multiple regression, analysis of
	covariance, model selection.
STAT 512	Stat Methods for Research 2 (3 Cr.) (Winter) (Prereq: STAT 511) Advanced
	statistical methodologies and experimental design. Topics include multi-way
	analysis of variance, mixed models analysis of variance, logistic regression,
	log-linear models, time series models, principal components, canonical
CTD 4 T E CC	correlation, common experimental designs.
STRAT 560	Strategic Management (3 Cr.) (Fall, Winter) (MAcc or MISM major status)
	Top-management approach to problems of determining corporate strategy.
	Structured for accounting and information systems students.